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In this paper we investigate a q=0 plane which cannot be obtained by putting 
q=0 in the Wess-Zumino formalism and has no classical analog. 

The study of the quantum plane is intended to extend the concept 
of commutative (or anticommutative) space-time to the more generic case 
(noncommutative associative space-time) which includes the former two cases 
as special examples (classical cases). As bosons reside in commutative space- 
time and fermions reside in anticommutative space-time, a quon 2 is believed 
to live in q-commutative space-time (quantum plane). Since the development 
of the geometry of noncommutative space (Manin, 1988, 1989), physicists 
have studied the differential calculus of this space (Woronowicz, 1987, 1989; 
Wess and Zumino, 1990; Zumino, 1991; Schmidke et  aL,  1989; Schirrmacher, 
1991 a,b; Schimnacher e t  al.,  1991; Burdik and Hlavaty, 1991; Hlavaty, 1991; 
Burdik and Hellinger, 1992; Ubriaco, 1992; Giler e ta l . ,  1991, 1992; Lukierski 
et  al.,  1991; Lukierski and Nowicki, 1992; Castellani, 1992; Chaichian and 
Demichev, 1992; Chung, n.d.-a,b; Chung et  al.,  1994). The most pedagogical 
paper is Wess and Zumino (1990). However, in spite of much effort in this 
direction, the q=0 case has been excluded from the realm of research. Of 
course, the q=0 case is not a deformation, because the deformation parameter 
does not exist. Moreover, the q=0 case has no classical analog. Nevertheless, 
the q=0 oscillator algebra has been shown to be a kind of Hopf algebra 
(Chung, 1994). Recently Greenberg (1990) discussed the q=0 oscillator 
algebra and showed that the algebra obeys the quantum Boltzmann statistics. 
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2 Here we refer to quons as particles satisfying the q-deformed Heisenberg-Weyl algebra. 
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In this paper we discuss the q = 0  plane in a systematic way. It is worth noting 
that we cannot construct the q = 0  plane by putting q = 0  in the Wess-Zumino 
formalism (Wess and Zumino, 1990). However, we can obtain the differential 
calculus for the q = 0  plane and construct an R matrix for the q =0  case which 
satisfies the Yang-Baxter equation but does not have an inverse. 

The q = 0  quantum plane is defined by the two commutation relations 3 

xy = 0 (1) 

dx dy = 0 (2) 

which imply that yx  and dy dx cannot be written in terms of xy and dx dy, 
respectively. We want to define an exterior differential d satisfying the usual 
properties such as 

d 2 = 0 (3) 

and the Leibniz rule 

d(fg) = f dg + (df)g (4) 

where f and g are functions of the variables x and y. Now we obtain the 
commutation relations among rows and columns for the q = 0 matrix. Consider 
the transformation 

(x) a 
(5) 

y '  ~ d y 

which preserves the relation (1). We assume that entries of this matrix com- 
mute with the coordinates x and y. This leads to 

ac = O, bd = O, bc = 0 (6) 

which do not determine all the commutation relations between the entries of  
the transformation matrix. Let us therefore impose other conditions on the 
transformation matrix, which are given by equation (2) and the nilpotent 
property of the exterior differential, 

dx'  dy'  = 0, (dx') 2 = (dy') 2 = 0 (7) 

These result in the following relations: 

bc = O, ba = O, dc = 0 (8) 

The q = 0  determinant is obtained by the transformation formula 

dy'  sx'  = D dy dx (9) 

3Here we put q=0 in the three types of solutions given in Brzezinski (1992). 
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where the q=0  determinant D is written as 

D = da (10) 

Now let us compute the R matrix for the q=0  plane. To do so, we have 
the following relation: 

RTtT2 = TzT~R (11) 

where 

T1 = T | I, Tz = I | T (12) 

This equation and the relations among the entries of the q=O matrix T give 
us the following relations: 

= R2111 = R2211 = R~ / = R 22 = R1222 = R22~ = 0 

ab(R',', - R ~ )  = 0 

R] 1 22 = 
I - R2z  0 

ca(R~ - R'll,) = 0 

12 
g l z ( a d -  da) = cb(R~ - R~) 

d b ( R ~  - R 22) = 0 

c d ( R ~ -  R~21) = 0 (14) 

Demanding the Yang-Baxter equation 

RlzRI3R23 = R23R13R12 (15) 

and solving the above relations, we obtain the following two solutions 4 

4In the appendix we list several solutions of the Yang-Baxter equation. The R matrix (16) and 
the R' matrix (17) are obtained from Rm and Rx, respectively, of  the appendix. 
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( OOo o 
R =  1 1 (16) 

0 0 

R ' =  0 1 
1 0 (17) 

0 0 

where we should impose the relations 

ad = da, ab = O, cd = 0 (18) 

In both cases we have no classical analog. In defining the q = 0  plane, we 
used the relation xy = 0, so we discard the R' solution. Therefore we conclude 
that there exists an R matrix for the q = 0  plane satisfying the Yang-Baxter 
equation even though this type of R matrix does not have an inverse. 

Now we discuss the differential calculus for the q = 0  plane. First we 
write the commutation relation between coordinates and differentials. The 
general form, linear in coordinates and consistent with the assumed scale 
invariance, reads 

x dx = a dxx  

y dy = b dyy 

x dy = c dxy + e dxy 

y dx = f dxy + g dyx (19) 

From the consistency condition 

d(xy) = 0 (20) 

we get 

c = 0 and (1 + e) dxy = 0 (21) 

Through the consistency condition 

x y d x = O  (22) 

we commute dx through to the left, using equations (19); then we have 
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ge = 0 (23) 

Similarly, with another consistency condition 

xy dy = 0 (24) 

we commute  dy through to the left, using equations (19); then we have 

be = 0 (25) 

Then we have the fol lowing two cases. 

Case I. e = - 1  and d r y  :~ 0. In this case we  have b = g = 0; then 
we get dy dr = - f d x  dy = 0, which leads to a contradiction. So we discard 
this choice.  

Case II. e v ~ - 1 and d r y  = 0. In  this case we  have e = 0 and  g = - 1. 

Therefore equations (19) reduce to 

x dx = a drx 

y dy = b dyy 

x d y = O  

y dr = - d y x  (26)  

where a and b are not determined at this stage, but will be fixed later by 
imposing other consistency conditions. 

When we act by the differential on the function f(x, y), we use the 
fol lowing definition: 

df  = dr Oxf + dy Oyf (27)  

Substituting f---)  xf  or f---) yf, we find the commutation relations between 
coordinates and derivatives, 

O ~ c =  1 + a x O x  

OyX = Oyy -= 0 

Oyy = 1 -- XOx + byOy (28)  

From the Poincar4 lemma for the exterior differentials 

d 2 = 0 (29)  

we obtain the commutation relation between derivatives 

OxOy = 0 (30) 

A p p l y i n g  Ox to the last equation of  (28) and us ing  (30) leads to a = 0. The 
next (last) step is to fix the commutation relation between differentials and 
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derivatives and to determine the value of b. To do so we consider the most 
general form for the commutation relations between differentials and deriva- 
tives, 

Ox dr = A dx Ox + B dy Cgy 

Oy dx = C dx Oy + D dy Ox 

Oy dy = E dx O~ + F dy Oy 

Oxdy = G dy O~ + H dx Oy (31) 

From the relation 

we find 

d(dx) = -dxd ,  d(dy) = - d y d  (32) 

C = 0  and E =  - 1  (33) 

Multiplying the first and second equations of (31) by dy from the right and 
commuting dy through to the left, we obtain 

B = 0 and DH = 0 (34) 

Applying 0x to the second and third equations of (31) from the left and 
commuting Ox through to the right, we obtain 

A = 0 and FH = 0 (35) 

Multiplying the fourth equation of (31) by x and y from the right and commut- 
ing x and y through to the left, we obtain 

G = 0 and H = 0 (36) 

Similarly, multiplying the third equation of (31) by x and y from the right 
and commuting x and y through to the left, we obtain 

O = 0 ,  

Therefore the commutation 
read 

Ox 

Or 

Oy 

Ox 

F = - 1 ,  b = - 1  (37) 

relations between differentials and derivatives 

dx = O 

d x = O  

dy = - d x  Ox - dy Oy 

dy = O (38) 

Hence we can say that the q=0  plane exists and the corresponding R matrix 
is obtained. We showed that this kind of R matrix satisfies the Yang-Baxter 



The q=O Quantum Plane 461 

equation although it has no classical analog. We also investigated the differen- 
tial calculus of the q=O plane. 

APPENDIX. TYPES OF SOLUTIONS FOR 
YANG-BAXTER EQUATION 

In this appendix we introduce some types of solutions of the Yang- 
Baxter equation: 

R12R13R23 = R23R13R12 

( OOo k 
R I =  k 0 

0 0 

RII = (i ~ Oo ' m Oo i) 
(!oo 

I 0 
Rni = k -  lm/k m 

0 0 

g l v  = (i ~ 1 7 6  
l k - lm/k 

0 m 

0 0 ( oo 
_+k 0 

R v =  0 _+k 

0 0 

_+k 0 
Rvi = 0 +-k 

0 0 

i) 
i) 

(AI) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 
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lk 

0 
RxI V = 

0 

0 

a 1 - kl 

t 2 -  kl 

l 0 

0 1-1 

0 0 

1 + 12 - 2 k l  

13 - -  212k + k21 
- a  

1 - kl 

l 2 - ~l a 

k 

a2t 
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(A14) 

Rxv = 

? k a 1 1 - kl a2 
-k--l a 12k _ k2l 

1 - kl 
0 l k - k - 1  k l - k  2 a  

0 0 l - l  k - k 2 1  

[2 k _ k2 l a 
0 0 0 k 

(A15) 
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